Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Commun (Lond) ; 44(4): 469-490, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38512764

RESUMO

BACKGROUND: Chemoresistance is a major cause of treatment failure in gastric cancer (GC). Heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) is an N6-methyladenosine (m6A)-binding protein involved in a variety of cancers. However, whether m6A modification and hnRNPA2B1 play a role in GC chemoresistance is largely unknown. In this study, we aimed to investigate the role of hnRNPA2B1 and the downstream mechanism in GC chemoresistance. METHODS: The expression of hnRNPA2B1 among public datasets were analyzed and validated by quantitative PCR (qPCR), Western blotting, immunofluorescence, and immunohistochemical staining. The biological functions of hnRNPA2B1 in GC chemoresistance were investigated both in vitro and in vivo. RNA sequencing, methylated RNA immunoprecipitation, RNA immunoprecipitation, and RNA stability assay were performed to assess the association between hnRNPA2B1 and the binding RNA. The role of hnRNPA2B1 in maintenance of GC stemness was evaluated by bioinformatic analysis, qPCR, Western blotting, immunofluorescence, and sphere formation assays. The expression patterns of hnRNPA2B1 and downstream regulators in GC specimens from patients who received adjuvant chemotherapy were analyzed by RNAscope and multiplex immunohistochemistry. RESULTS: Elevated expression of hnRNPA2B1 was found in GC cells and tissues, especially in multidrug-resistant (MDR) GC cell lines. The expression of hnRNPA2B1 was associated with poor outcomes of GC patients, especially in those who received 5-fluorouracil treatment. Silencing hnRNPA2B1 effectively sensitized GC cells to chemotherapy by inhibiting cell proliferation and inducing apoptosis both in vitro and in vivo. Mechanically, hnRNPA2B1 interacted with and stabilized long noncoding RNA NEAT1 in an m6A-dependent manner. Furthermore, hnRNPA2B1 and NEAT1 worked together to enhance the stemness properties of GC cells via Wnt/ß-catenin signaling pathway. In clinical specimens from GC patients subjected to chemotherapy, the expression levels of hnRNPA2B1, NEAT1, CD133, and CD44 were markedly elevated in non-responders compared with responders. CONCLUSION: Our findings indicated that hnRNPA2B1 interacts with and stabilizes lncRNA NEAT1, which contribute to the maintenance of stemness property via Wnt/ß-catenin pathway and exacerbate chemoresistance in GC.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Ribonucleoproteínas Nucleares Heterogêneas , RNA/farmacologia
2.
J Biol Chem ; 300(1): 105534, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072050

RESUMO

Significant advances have been made in reprogramming various somatic cells into induced pluripotent stem cells (iPSCs) and in multi-lineage differentiation (transdifferentiation) into different tissues. These manipulable transdifferentiating techniques may be applied in cancer therapy. Limited works have been reported that cancer cell malignancy can be switched to benign phenotypes through reprogramming techniques. Here, we reported that two colorectal cancer (CRC) cell lines (DLD1, HT29) could be reprogrammed into iPSCs (D-iPSCs, H-iPSCs). D- and H-iPSCs showed reduced tumorigenesis. Furthermore, we successfully induced D- and H-iPSCs differentiation into terminally differentiated cell types such as cardiomyocyte, neuron, and adipocyte-like cells. Impressively, the differentiated cells exhibited further attenuated tumorigenesis in vitro and in vivo. RNA-Seq further indicated that epigenetic changes occurred after reprogramming and transdifferentiation that caused reduced tumorigenicity. Overall, our study indicated that CRC cells can be reprogrammed and further differentiated into terminally differentiated lineages with attenuation of their malignancy in vitro and in vivo. The current work sheds light on a potential multi-lineage differentiation therapeutic strategy for colorectal cancer.


Assuntos
Carcinogênese , Transdiferenciação Celular , Técnicas de Reprogramação Celular , Neoplasias Colorretais , Células-Tronco Pluripotentes Induzidas , Humanos , Carcinogênese/patologia , Diferenciação Celular/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia
3.
Cancer Med ; 12(1): 513-524, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35607944

RESUMO

Colorectal cancer (CRC) is a major leading cause of cancer mortality worldwide in which dysregulated protein synthesis plays an etiologic role. The eukaryotic elongation factor 1 A1 (eEF1A1) exerts significant effects on protein synthesis by contributing to peptide chain extension. Whereas its role in CRC remains to be investigated. In this study, we found that the mRNA and protein levels of eEF1A1 were significantly upregulated in CRC cell lines and tissues. Elevated expression of eEF1A1 was correlated with shorter overall survival in 94 CRC patients. The inhibition of proliferation and cell cycle block were observed in CRC cells after eEF1A1 downregulation. Mechanistically, weighted gene correlation network analysis and further Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that mitogen-activated protein kinases (MAPKs) signaling pathways were significantly enriched in high-eEF1A1 expression group, and the levels of phosphorylated p38/JNK/ERK MAPK were dramatically decreased after eEF1A1 downregulation. Overexpression of eEF1A1 in CRC correlated with a poor prognosis. Collectively, this study determined the oncogenic role of eEF1A1 in CRC proliferation and tumorigenesis. eEF1A1 might be a promising therapeutic target and prognostic biomarker in CRC.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Sistema de Sinalização das MAP Quinases , Linhagem Celular , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Prognóstico , Proliferação de Células , Linhagem Celular Tumoral
4.
J Transl Med ; 20(1): 454, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195882

RESUMO

BACKGROUND: Liver metastases are a major contributor to the poor immunotherapy response in colorectal cancer patients. However, the distinctions in the immune microenvironment between primary tumors and liver metastases are poorly characterized. The goal of this study was to compare the expression profile of multiple immune cells to further analyze the similarities and differences between the microenvironments of liver metastases and the primary tumor. METHODS: Tissues from 17 patients with colorectal cancer who underwent resection of primary and liver metastases was analyzed using multispectral immunofluorescence. The expression of multiple immune cells (CD8, Foxp3, CD68, CD163, CD20, CD11c, CD66b, CD56, PD-L1, INF-γ, Ki67 and VEGFR-2) in the tumor center (TC), tumor invasive front (< 150 µm from the tumor center, TF) and peritumoral region (≥ 150 µm from the tumor center, PT) was evaluated via comparison. The expression of CD68 and CD163 in different regions was further analyzed based on the cell colocalization method. In addition, different immune phenotypes were studied and compared according to the degree of CD8 infiltration. RESULTS: The expression trends of 12 markers in the TF and TC regions were basically the same in the primary tumor and liver metastasis lesions. However, in comparison of the TF and PT regions, the expression trends were not identical between primary and liver metastases, especially CD163, which was more highly expressed in the PT region relative to the TF region. In the contrast of different space distribution, the expression of CD163 was higher in liver metastases than in the primary foci. Further analysis of CD68 and CD163 via colocalization revealed that the distribution of macrophages in liver metastases was significantly different from that in the primary foci, with CD68-CD163+ macrophages predominating in liver metastases. In addition, among the three immunophenotypes, CD163 expression was highest in the immune rejection phenotype. CONCLUSIONS: The immune cells found in the primary tumors of colorectal cancer differed from those in liver metastases in terms of their spatial distribution. More immunosuppressive cells were present in the liver metastases, with the most pronounced differential distribution found for macrophages. CD68-CD163+ macrophages may be associated with intrahepatic immunosuppression and weak immunotherapeutic effects.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Antígeno B7-H1 , Neoplasias Colorretais/patologia , Fatores de Transcrição Forkhead , Humanos , Antígeno Ki-67 , Neoplasias Hepáticas/secundário , Prognóstico , Microambiente Tumoral , Receptor 2 de Fatores de Crescimento do Endotélio Vascular
5.
Mol Cancer ; 21(1): 74, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279145

RESUMO

BACKGROUND: Epithelial-to-mesenchymal transition (EMT) is a process linked to metastasis and drug resistance with non-coding RNAs (ncRNAs) playing pivotal roles. We previously showed that miR-100 and miR-125b, embedded within the third intron of the ncRNA host gene MIR100HG, confer resistance to cetuximab, an anti-epidermal growth factor receptor (EGFR) monoclonal antibody, in colorectal cancer (CRC). However, whether the MIR100HG transcript itself has a role in cetuximab resistance or EMT is unknown. METHODS: The correlation between MIR100HG and EMT was analyzed by curating public CRC data repositories. The biological roles of MIR100HG in EMT, metastasis and cetuximab resistance in CRC were determined both in vitro and in vivo. The expression patterns of MIR100HG, hnRNPA2B1 and TCF7L2 in CRC specimens from patients who progressed on cetuximab and patients with metastatic disease were analyzed by RNAscope and immunohistochemical staining. RESULTS: The expression of MIR100HG was strongly correlated with EMT markers and acted as a positive regulator of EMT. MIR100HG sustained cetuximab resistance and facilitated invasion and metastasis in CRC cells both in vitro and in vivo. hnRNPA2B1 was identified as a binding partner of MIR100HG. Mechanistically, MIR100HG maintained mRNA stability of TCF7L2, a major transcriptional coactivator of the Wnt/ß-catenin signaling, by interacting with hnRNPA2B1. hnRNPA2B1 recognized the N6-methyladenosine (m6A) site of TCF7L2 mRNA in the presence of MIR100HG. TCF7L2, in turn, activated MIR100HG transcription, forming a feed forward regulatory loop. The MIR100HG/hnRNPA2B1/TCF7L2 axis was augmented in specimens from CRC patients who either developed local or distant metastasis or had disease progression that was associated with cetuximab resistance. CONCLUSIONS: MIR100HG and hnRNPA2B1 interact to control the transcriptional activity of Wnt signaling in CRC via regulation of TCF7L2 mRNA stability. Our findings identified MIR100HG as a potent EMT inducer in CRC that may contribute to cetuximab resistance and metastasis by activation of a MIR100HG/hnRNPA2B1/TCF7L2 feedback loop.


Assuntos
Neoplasias Colorretais , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B , MicroRNAs , RNA Longo não Codificante , Linhagem Celular Tumoral , Movimento Celular/genética , Cetuximab/genética , Cetuximab/metabolismo , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Via de Sinalização Wnt/genética
6.
Cancer Lett ; 524: 42-56, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34582976

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has the highest fatality rate of any solid tumor, with a five-year survival rate of only 10% in the USA. PDAC is characterized by early metastasis. More than 50% of patients present with distant metastases at the time of diagnosis, and the majority of patients will develop metastasis within 4 years after tumor resection. Despite extensive studies, the molecular mechanisms underlying PDAC metastasis remain unclear. The polyoma enhancer activator protein (PEA3) subfamily was reported to play a vital role in the initiation and progression of multiple tumors. Herein, we found that ETS variant 4 (ETV4) was highly expressed in PDAC tissues and associated with poor survival. Univariate and multivariate analyses revealed that ETV4 expression was an independent prognostic factor for patient survival. Further experiments showed that ETV4 overexpression promoted PDAC invasion and metastasis both in vitro and in vivo. For the first time, we demonstrated that, mechanistically, ETV4 increased CXCR5 expression by directly binding to the CXCR5 promoter region. Knockdown of CXCR5 significantly reversed ETV4-mediated PDAC migration and invasion, while CXCR5 overexpression exerted the opposite effects. Intriguingly, we found that CXCL13, a specific ligand of CXCR5, increased ETV4 expression and promoted PDAC invasion and metastasis by activating the ERK1/2 pathway. ETV4 knockdown significantly abrogated the enhanced migratory and invasive abilities induced by the CXCL13/CXCR5 axis. In addition, a CXCR5 neutralizing antibody disrupted the CXCL13/ETV4/CXCR5 positive feedback loop and inhibited cell migration and invasion. Overall, in this study, we demonstrated that ETV4 plays a vital role in PDAC metastasis and defined a novel CXCL13/ETV4/CXCR5 positive feedback loop. Targeting this pathway has implications for potential therapeutic strategies for PDAC treatment.


Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Quimiocina CXCL13/genética , Proteínas Proto-Oncogênicas c-ets/genética , Receptores CXCR5/genética , Adenocarcinoma/patologia , Adulto , Idoso , Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Pessoa de Meia-Idade , Transdução de Sinais/genética
7.
Int J Biol Sci ; 17(14): 3837-3849, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671202

RESUMO

Following dramatic success in many types of advanced solid tumors, interest in immunotherapy for the treatment of colorectal cancer (CRC) is increasingly growing. Given the compelling long-term durable remission, two programmed cell death 1 (PD-1)-blocking antibodies, pembrolizumab and nivolumab (with or without Ipilimumab), have been approved for the treatment of patients with metastatic colorectal cancer (mCRC) that is mismatch-repair-deficient and microsatellite instability-high (dMMR-MSI-H). Practice-changing results of several randomized controlled trials to move immunotherapy into the first-line treatment for MSI-H metastasis cancer and earlier stage were reported successively in the past 2 years. Besides, new intriguing advances to expand the efficacy of immunotherapy to mCRC that is mismatch-repair-proficient and low microsatellite instability (pMMR-MSI-L) demonstrated the potential benefits for the vast majority of mCRC cases. Great attention is also paid to the advances in cancer vaccines and adoptive cell therapy (ACT). In this review, we summarize the above progresses, and also highlight the current predictive biomarkers of responsiveness in immunotherapy with broad clinical utility.


Assuntos
Neoplasias Colorretais/terapia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Transferência Adotiva , Biomarcadores/metabolismo , Vacinas Anticâncer/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/radioterapia , Terapia Combinada , Humanos
8.
Front Oncol ; 11: 634579, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33869020

RESUMO

The dysregulation of long non-coding RNAs (lncRNAs) and transcription factors (TFs) is closely related to the development and progression of drug resistance in cancer chemotherapy. However, their regulatory interactions in the multidrug resistance (MDR) of gastric cancer (GC) has largely remained unknown. In this study, we report a novel oncogenic role of lncRNA FENDRR in conferring MDR in GC by coordinated regulation of FOXC2 expression at the transcriptional and posttranscriptional levels. In vitro and in vivo experiments demonstrated that downregulation of FENDRR expression remarkably decreased drug resistant ability of GC MDR cells while upregulation of FENDRR expression produced the opposite effect. FENDRR overexpression was observed in MDR GC cell lines, patient-derived xenografts, and clinical samples. And the high levels of FENDRR expression were correlated with poor prognosis in GC patients. Regarding the mechanism, FENDRR was revealed to increase proto-oncogene FOXC2 transcription by performing an enhancer-like role in the nucleus and by sponging miR-4700-3p in the cytoplasm. Both FOXC2 and miR-4700-3p were shown to be functionally involved in the FENDRR-induced chemoresistance. In addition, there is a positive correlation between FENDRR and FOXC2 expression in clinic and the overexpressed FOXC2 indicated a poor prognosis in GC patients. Collectively, our findings provide a new perspective for the lncRNA-TF regulatory interaction involved in MDR, suggesting that targeting the FENDRR/FOXC2 axis may be an effective approach to circumvent GC chemoresistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...